F324 TEST 1 MS

1. Discussion of the π -bonding

p-orbitals overlap (1)

above and below the ring (1)

(to form) π -bonds / orbitals (1)

any of the first three marks are available from a labelled diagram

eg

(π -bonds / electrons) are <u>delocalised</u> (1)

4 marks

Other valid points - any two of:

- ring is planar /
- C-C bonds are equal length / have intermediate length/strength between C=C and C-C /
- σ-bonds are between C-C and/or C-H
- bond angles are 120°

MAX 2 out of **4** marks (1)(1)

Quality of written communication

two or more sentences with correct spelling, punctuation and grammar

[7]

6

1

2. (i) $C_6H_5NO_2$ (1)

1

1

(ii)

[2]

3. bromine as an electrophile (a) (i)

an electrophile accepts an electron pair (1)

NOT a lone pair

bromine is polarised/has + charge (centre)/dipole on Br-Br/Br⁺ shown in diagram (1)

appropriate diagram showning a curly arrow from a double/ π bond to the Br^{δ +}/Br⁺ (1)

3

(ii) comparison of reactivity of cyclohexene and benzene

benzene is (more) stable / more energy required (1)

benzene (π) electrons are delocalised (1)

benzene has lower electron/- charge density (1)

so bromine is less polarised /attracted to it / benzene is less susceptible to electrophiles (1)

ora for cyclohexene

4

quality of written communication mark for any two of the terms:

delocalised/localised, π -electrons/bonds/system, electron density, dative covalent, activation/stabilisation energy, halogen carrier, heterlytic fission, addition/substitution, polarity used appropriately (1)

1

(b) (i) iodobenzene because ...

Br is more electronegative than I (1) ora

so the I atom will be positive δ^+ /the electrophile (1)

2

1

(ii)
$$C_6H_6 + IBr \rightarrow C_6H_5I + HBr$$
 (1)
or ecf giving $C_6H_5Br + HI$

[11]

4. nitration stage

(conc) H₂SO₄ (1)

(conc) HNO₃ (1)

equation – e.g.: $C_6H_5CH_3 + HNO_3 \rightarrow C_6H_4(CH_3)NO_2 + H_2O$ (1)

intermediate – name or unambiguous structure (1)

4 marks

reduction stage

tin/iron (1)

HCl (1)

equation – e.g.: $C_6H_4(CH_3)NO_2 + 6[H] \rightarrow C_6H_4(CH_3)NH_2 + 2H_2O$

or with H⁺ also on left to give C₆H₄(CH₃)NH₃⁺ (1)

3 marks

allow other suitable reducing agents:

Quality of Written Communication mark for a well organised answer with the two stages clearly distinguished and sequenced (1) 1 mark

8

[8]

ALLOW $C_6H_6 + Br_2 \longrightarrow C_6H_5Br + HBr$ DO NOT ALLOW multiple substitution DO NOT ALLOW Br^+

1

(b) (i) White precipitate \mathbf{OR} white solid \mathbf{OR} white crystals \checkmark

DO NOT ALLOW colourless
DO NOT ALLOW white ppt and bubbles

DO NOT ALLOW

 $Br_3C_6H_2OH \ OR \ 2,4,6$ -tribromophenol OR tribromophenol

(ii) 1,2-Dibromocyclohexane ✓

ALLOW 1,2dibromocyclohexane OR 1-2dibromocyclohexane OR 12dibromocyclohexane OR cyclo-1,2-dibromohexane

DO NOT ALLOW dibromocyclohexane OR C₆H₁₀Br₂

OR structures

1

2

(iii) MUST spell <u>delocalised/delocalized</u> or <u>localised/localized</u> correctly once in the answer to obtain all 5 marks

benzene electrons or π -bonds are delocalised \checkmark

ALLOW diagram to show overlap of all 6 p-orbitals for delocalisation

DO NOT ALLOW benzene has delocalised structure or ring

phenol a <u>lone</u> or <u>non-bonded</u> pair of electrons on the oxygen or the OH group is (partially) delocalised into the ring \checkmark

ALLOW diagram to show movement of lone pair into ring for phenol

cyclohexene electrons are localised **OR** delocalised between two carbons ✓

ALLOW diagram or description of overlap of 2 adjacent p-orbitals for bonding in cyclohexene

DO NOT ALLOW cyclohexene has a C=C double bond **IGNORE** slip if cyclohexene is written as cyclohexane but π -bonding correctly described

benzene has a lower **electron density OR** phenol has a higher electron density **OR** cyclohexene has a higher electron density ✓

DO NOT ALLOW charge density **OR** electronegativity instead of electron density

benzene cannot **polarise** or induce a dipole in Br_2 **OR** phenol can polarise the Br_2 **OR** cyclohexene can polarise Br_2 or the Br-Br bond \checkmark

ALLOW Br^{δ^+} **OR** electrophile Br^+ as alternate to polarise

6.

3

[3]