Carbonyls and carboxylic acids

1. (i)

a correct skeletal aldehyde is shown on C1 (1) rest of the skeletal structure (C_2-C_{10}) correct (1)

2

2

(ii)
$$C_9H_{15}CH_2OH + [O] \rightarrow C_9H_{15}CHO (1) + H_2O (1)$$

NOT COH,
 $allow \ C_{10}H_{16}O$

[4]

2.
$$CCl_3CH(OH)_2 + [O] \rightarrow CCl_3COOH + H_2O$$
 (1)

[1]

1

1

1

(ii)
$$C_6H_5CHCHCHO + 2[H] \rightarrow C_6H_5CHCHCH_2OH$$
 (1)
 $allow C_9H_{10}O$

[2]

1

1

(ii)
$$C_{14}H_{10}O_2 + 4[H] \rightarrow C_{14}H_{14}O_2$$
 (1)
 $allow\ ecf\ from\ (i)$

[2]

- 5. (a) (i) heat with: Tollens' reagent / ammoniacal silver nitrate (1) to give: silver mirror / precipitate (1) 2 aldehydes can be oxidised to a carboxylic acid ora (ii) / aldehydes can reduce Ag + to Ag (1) 1 CH₃CH=CHCH₂OH (1) (b) (i) (either stereoisomer) 1 reduction / redox / addition (1) (ii) (NOT hydrogenation) 1 $C_4H_6O + 5O_2 \rightarrow 4CO_2 + 3H_2O$ (1) 1 (c) [6]
- 6. (i) $H^{\delta +}$ $S^{+} + O^{\delta}S$ $CH_{3}CH_{2} + C$ H + H 1 mark for each curly arrow (1)(1) 2(ii)
 - CH₃CH₂ C

 H (1)

 (iii) electron pair donor (1)

 (iv) electron pair on H⁻ attracted to δ+ carbon forming a dative covalent bond (1) the double/π electron pair breaks (1) electron pair now on O⁻ (1)

 [7]

7. (a)

curly arrow from O of OH to C (1)

dipole on C=O and curly arrow breaking C=O (1)

structure of the intermediate (1)

curly arrow from O (of the correct intermediate)

... to H of H₂O (1) (allow O to H⁺ ion here)

curly arrow breaking the H–O bond in H₂O (1)

(b) one mark for the correct answer to each step below with ecf throughout steps may come in any order

one week's supply = $21 \times dose(1)$ 5.25 g / 0.0317mol

mass of trichloroethanal = 4.68 g (223mg if done first)

 $0.891 \times \text{mass of chloral hydrate } (1)$

60% yield = mass/moles x 100/60 (1) 7.8(0 g)

common errors for two marks are: 9.82 g (mass ratio upside down)

8.75 g (mass ratio not done)

2.60 g (3× not done), 1.11 g (7× not done), 0.371 g (21× not done)

7798 g (mg to g not done) etc.

[8]

5

3

8. method

silver nitrate (1)

ammonia / ammoniacal (1)

warm / heat (1)

silver (mirror) / brown ppt forms (1)

explanation

silver ions reduced / $Ag^+ + e^- \rightarrow Ag$ (1)

aldehyde oxidised to a carboxylic acid (1)

correct structure – eg C₆H₅CHCHCOO⁻/COOH (1)

quality of written communication

mark for correct spelling, punctuation and grammar in at least two sentences (1)

[8]