Nitrogen Compounds - MS

1. (a) (i) is an amine and a carboxylic acid / contains both NH2 and COOH functional groups (1) AW

1

(ii) $RCH(NH_2)COOH(1)$

Does not fit the formula because NH_2 and COOH are not attached to the same carbon (1) AW

2

(c)

displayed amide bond (1)

rest of the structure also correct (1)

(allow full marks for a correct anhydride structure)

[7]

2. (i) one amide link shown correctly (1) glycine and phenylalanine parts shown correctly (1) proline linked correctly (1)

3

2

(ii) 6 (**1**)

[4]

3. (i) water / evidence of a solution in water – eg (aq), 'dil', '6M' or ' conc' for HCl (1)

NOT conc HNO₃

or conc H₂SO₄

a named strong acid or alkali (heated under) reflux /(1)

2

(ii) amino acids (1)

1

(iii) correct structure for one of the amino acids (1) correct ionic form for reagent used in a(i) – eg

2

(iv) reaction with water to split/break down the compound (1) peptide bond in the compound is broken / diagram to show AW (1)

2

[7]

4. General formula of an α -amino acid

Diagram to show length of polypeptide / repeat unit – eg

with:

displayed peptide bond (1)

correct structure with a minimum of two amino acids joined (can be scored by a dipeptide) (1)

idea of polymerisation shown by 'end bonds' (1)

loss of water (1)

relate variety to different R groups / sequence of amino acids (1) AW

6

1

Quality of written communication:

correct organisation and use of **both** of the terms: <u>condensation polymer(isation)</u> and <u>peptide bond/link (1)</u>

[7]

5. (i)

$$\begin{array}{c|c} H \\ \downarrow \\ H_2N & C & COOH \\ R & \checkmark \end{array}$$

ALLOW RCH(NH₂)COOH any order for R, NH₂ and COOH but C must be next to H '<u>CH'</u> must be shown ALLOW CO₂H brackets around NH₂ are **not** essential ALLOW structure

1

(ii) must attempt 3D

use RE symbol in the "tools" to denote whether or not each chiral C is a reflection of the one given in the question

both chiral Cs are mirror images

top chiral C only is a mirror image

bottom chiral C only is a mirror image

each chiral C must have 2 — bonds, 1 wedge bond (**IGNORE** shading) & 1 dash bond (**IGNORE** wedge) check the clockwise orientation of each C. For each C start with the H and if on the:

- top C the H is followed by COOH it is not a mirror image. If it is a mirror image annotate using RE.
- bottom C the H is followed by CH₃ it is not a mirror image. If it is a mirror image annotate using RE. the four groups can be attached in any order. If the molecule is drawn upside down clockwise becomes anti-clockwise.

MUST check that the drawn structure is non-superimposable irrespective of the orientation or the way it has been drawn.

IGNORE bond linkage for all groups

3

6. (a) (i)
$$H_2NCHRCOOH / H_2N - C-COOH$$
 (1)

allow R CH NH₂ and COOH in any order

(ii) they both have the $H_2N-\overset{\vdots}{C}-COOH$ group / or in words (1) NOT just "they both have NH_2 and COOH"

R group is H in glycine and CH₂CH₂COOH in glutamic acid (1) 2

(b)

(c) glutamic acid/molecule with optical isomers ...

- ... is <u>chiral</u> (1)
- ... has four different / distinguishable groups attached to a carbon (1) NOT just "different atoms"
- ... the mirror images/isomers cannot be superimposed **AW** (1) one diagram showing **two** 3-D bonds not opposite each other, and not with angles looking like 90° (1)
- 3-D diagram of the other isomer (allow ecf on one 3-D error) (1) all groups correctly connected for glutamic acid in both diagrams (1)

glycine

only has three different groups / two groups are the same / 3-D diagram used to show symmetry (1)

8

1

5

quality of written communication

for correct use and organisation of at least **one** technical term: *(in the correct place), non-superimposable, enantiomer, stereoisomer(ism), tetrahedral, assymetric (1)

[16]

7.

2

9. $H_2N(CH_2)_6NH_2$

ALLOW H₂NCH₂CH₂CH₂CH₂CH₂CH₂NH₂

HOOC(CH₂)₈COOH ✓

ALLOW HOOCCH₂CH₂CH₂CH₂CH₂CH₂CH₂COOH ALLOW CO₂H for COOH ALLOW acid chloride, ClOC(CH₂)₈COCl ALLOW displayed formulae or skeletal formulae

[2]

10. (i)

(ii) any valid suggestion to explain or describe stronger intermolecular forces -e.g. Nomex is planar so packs together more easily / greater H-bonding / London forces between molecules (1) **AW** (ignore arguments based on Mr)

[3]

11. (i) addition (polymerisation) (1) *NOT additional*

1

2

1

(ii)

(iii) π -bond breaks (1)

many molecules join / a long chain forms / equation to show this using 'n' (1)

[4]

12. (a)

(1) for both

4

1

1

3

(b) HCl

(c) H_3N^+ — $(CH_2)_6$ — NH_3^+ (1) ^-O — $(CH_2)_4$ —C—O— $(CH_2)_4$

allow 1 mark for: both H_3N^+ — $(CH_2)_6$ — NH_3^+ and

(d) (i) 4

(ii)

- (iii) any three different chemically or biologically correct differences between amino acids and the nylon monomers (1)(1)(1) eg
 - protein monomers are amino acids / nylon monomers are a (di)amine/base and a (di)acid
 - protein monomers have different types/R groups / nylon monomers are two types/no variation
 - protein monomers have stereo/optical isomers/are chiral
 - protein monomers have higher melting points/ form zwitterions

other possible answers include:

• nylon monomers have longer chain length/no other functional groups / no aromatic content / are symmetrical etc don't allow comparisons solubility or M_r

13. (i) equation

$$(CH_3CO)_2O + H_2N \longrightarrow OH$$
 reactants \checkmark
$$H_3C \longrightarrow C \longrightarrow OH + CH_3COOH$$
 products \checkmark

ALLOW

 $(CH_3CO)_2O + H_2NC_6H_4OH \longrightarrow CH_3CONHC_6H_4OH + CH_3COOH$

ALLOW

DO NOT ALLOW molecular formulae

(ii)
$$C_{10}H_{11}NO_3$$
 is

OR

$$H_3C$$
 C O OH OH

ALLOW amide shown as either CH₃CONH– **OR** H₃CCONH– **OR** CH₃COHN– **OR** H₃CCOHN–

ALLOW ester shown as either -OCOCH3 OR -OOCCH3

2

(iii) to ensure that there are no (harmful) side effects ✓

ALLOW impurities reduce effectiveness (of drug) OR might be toxic

OR avoids litigation OR harmful OR hazardous **ALLOW** to ensure that the drug/active component is safe IGNORE dangerous OR nasty OR can kill OR increased dosage

[4]

- $C_{13}H_{20}O_3$ (1) **14.** (i)
 - (ii) ketone (1) ester (1) alkene (1)

3

1

1

(iii)

E/Z(1)

2

possible side effects of other chiral compound (1) increased costs/difficulty of separating of isomers (1) using bacteria within synthetic route (1)

2 max

[8]

- $NaBH_4$ (1) **15.** (a) (i)
 - (ii) 4-hydroxypentanoic acid (1)

1

1

(b) section of the polymer (1) – e.g. (i)

1

(ii) a correct repeat shown (1) – e.g.

1

allow ecf from (i) only if the repeat is every 2 carbons along the chain and has a COOH

	(c)	(i)	$C_7H_{12}O_3(1)$	1	
		(ii)	$C_7H_{12}O_3 + 8\frac{1}{2}O_2 \rightarrow 7CO_2 + 6H_2O$ or ecf from (i)) formulae (1) balancing (1)	2	
		(iii)	idea of providing oxygen / reducing incomplete combustion AW (1)	1	
	(d)	(i)	heat/warm/reflux (1) NaOH / KOH(aq) (1)	2	
		(ii)	G is an ester / sensible argument based on polarity (1)	1	[11]
16.	(i)	a carbon with four different groups attached (1)			
		a chiral carbon /centre (1)			
		diffe	rent spatial / 3-D arrangement (of the groups) (1)		
		(stereo)isomers / mirror images are non-superimposable / molecules are asymmetric (1) ANY 3 out of 4 marks		3	
	(ii)	i) contains 2 chiral centres (1)			
		each	can have 2 (stereo)isomers/ 2×2 possibilities AW (1)	2	
	(iv)	highe	er doses are required (1)		
		the d	rug /other stereoisomers may have (harmful) side-effects (1)	2	[8]