Position of Equilibrium

Pre-lesson assignment - Textbook p302 and 304-306

Make notes on changing the position of equilibrium

Use the following questions as guidance

Watch the video tutorial 'Position of equilibrium 1'

- 1. Write an expression for K_c for $N_2O_{4(g)} \rightleftharpoons 2NO_{2(g)}$
- 2. $[N_2O_{4(g)}] = 0.010 \text{ mol dm}^{-3} [NO_2] = 0.400 \text{ dm}^{-3}$ Calculate K_c under these conditions.
- 3. Adding $N_2O_{4(g)}$ so that $[N_2O_{4(g)}] = 0.050$ mol dm⁻³ breaks down the equilibrium. Using the value of K_c and the ratio of $[NO_2]/[N_2O_4]$ now obtained, explain why.
- 4. Explain how the equilibrium is re-formed.

Watch the video tutorial 'Position of equilibrium 2'

- 1. Write an expression for K_p for $N_2O_{4(g)} \rightleftharpoons 2NO_{2(g)}$
- 2. $p(NO_{2(g)}) = 9.6$ atm $p(N_2O_{2(g)}) = 0.24$ atm Calculate K_p
- 3. The pressure is doubled. Calculate $p(NO_{2(g)})$ and $p(N_2O_{4(g)})$.
- 4. Explain, using K_p and the ratio $p(NO_{2(g)})/p(N_2O_{4(g)})$ now obtained, why the system is no longer at equilibrium.
- 5. Explain how the equilibrium is reformed.