-	The following reaction is used in industry to make sulfur trioxide gas, SO ₃ . $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$ $\Delta H^{\ominus} = -196 \text{ kJ mol}^{-1}$
-	This preparation is carried out in the presence of a catalyst.
1]	Explain the conditions of temperature and pressure that could be used to obtain the maximum equilibrium yield of sulfur trioxide. Discuss the importance of a compromise between equilibrium yield and reaction rate when deciding the operational conditions for this process.
-	
-	
-	
_	
_	
_	
;	Sulfur trioxide, SO ₃ , is used for the industrial manufacture of sulfuric acid.
;	SO ₃ is produced by reacting sulfur dioxide, SO ₂ , and oxygen, O ₂ , as shown in equilibrium 25.1 below.
ı	Equilibrium 25.1 2SO ₂ (g) + O ₂ (g) \rightleftharpoons 2SO ₃ (g) $\triangle H$ = −197 kJ mol ⁻¹

Le Chatelier's principle can equilibrium position.	be used to predict how different conditions affect the
should be used to obt Explain why the actual	principle, show that a low temperature and a high pressure tain a maximum equilibrium yield of SO ₃ . All conditions used in industry may be different from the ramaximum equilibrium yield.
	[5]
Under certain conditions, Kc	for equilibrium 25.1 is $0.160 \text{ dm}^3 \text{ mol}^{-1}$.
The equilibrium mixture und O ₂ .	er these conditions has the following concentrations of SO ₂ and
Species	Equilibrium concentration / mol dm ⁻³
Species SO ₂	Equilibrium concentration / mol dm ⁻³ 2.00
•	-
SO_2 O_2 • Using the value of K_c , right or towards the le	2.00

(b).

	question looks at equilibrium reactions used by industry for preparing important nicals.
Meth	anol can be manufactured by reacting carbon monoxide with hydrogen. $CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$
	quilibrium mixture contains 3.10 \times 10 ⁻³ mol dm ⁻³ CO, 2.40 \times 10 ⁻³ mol dm ⁻³ H ₂ and arown concentration of CH ₃ OH.
i.	Write an expression for the equilibrium constant, K_c .
ii.	The value of K_c for this equilibrium is 14.6 dm ⁶ mol ⁻² . Determine the equilibrium concentration methanol, CH ₃ OH(g).
	Give your answer to three significant figures.
	equilibrium concentration of CH ₃ OH(g) =

4. The equilibrium system below is set up.

$$CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$$
 $\Delta H = +14 \text{ kJ mol}^{-1}$

The equilibrium system is compressed at constant temperature.

What is the effect on the value of K_c and the amount, in moles, of CH₃OH?

	K c	Amount in moles of CH₃OH
Α	increases	increases
В	decreases	decreases
С	no change	no change
D	no change	increases

Your answer	

[1]

5. A catalyst is added to a system in equilibrium.

What is the effect on the rates of the forward and reverse reactions?

- **A** There is no effect on the rate in either direction.
- **B** Both rates increase by the same factor.
- **c** The rate in the forward direction increases by a greater factor than the reverse direction.
- **D** The rate in the reverse direction increases by a greater factor than the forward direction.

|--|--|

[1]

What is the partial pressure of O_2 (in Pa) in a gas mixture containing 21% O_2 by volume and with a total pressure of 1.0 x 10⁵ Pa?

7. The reversible reaction of sulfur dioxide and oxygen to form sulfur trioxide is shown below.

$$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$$

An equilibrium mixture contains 2.4 mol SO₂, 1.2 mol O₂ and 0.4 mol SO₃. The total pressure is 250 atm.

What is the partial pressure of SO_3 ?

- Α 15 atm
- 25 atm В
- C 100 atm
- 200 atm D

Your answer	[1]

8. Methane is an important raw material for manufacturing chemicals. Hydrogen can be manufactured from methane and steam as shown below in equation 17.1.

$$CH_4(g) + H_2O(g) \rightleftharpoons 3H_2(g) + CO(g)$$
 $\Delta H = +210 \text{ kJ mol}^{-1}$

$$\Delta H = +210 \text{ kJ mol}^{-1}$$

Equation 17.1

The rate of reaction is increased by using a catalyst.

A chemist investigates the equilibrium shown in equation 17.1 as outlined below.

$$CH_4(q) + H_2O(q) \rightleftharpoons 3H_2(q) + CO(q)$$
 $\Delta H = +210 \text{ kJ mol}^{-1}$

$$\Delta H = +210 \text{ kJ mol}^{-1}$$

Equation 17.1

- A chemist mixes together 1.000 mol CH₄ and 1.400 mol of H₂O in a sealed container.
- The mixture is heated to constant temperature and allowed to reach equilibrium. The equilibrium mixture contains 0.200 mol of CH₄ and the total pressure is 30.0 atm.

Use this information to calculate K_p for the equilibrium in **equation 17.1**.

Show all your working.

							[7]
9	Ammonia can	be made from the	e reaction o	of nitrogen and hy	drogen in th	e Haber process.	
	$N_2(g) + 3H_2(g)$	450 °C and 200 kPa	2NH ₃ (g)	$\Delta H = -92 \text{ kJ mo}$	 ^{−1}	Equation 1	
	A chemist mix	es together 0.450	mol N ₂ wi	th 0.450 mol H ₂ ir	n a sealed co	ontainer.	
	The mixture is	heated and allow	ed to read	h equilibrium.			
	At equilibrium,	the mixture conta	ains 0.400	mol N ₂ and the to	otal pressure	is 500 kPa.	
	Calculate K_p .						
	Show all your	working.					
	Include units in	n your answer.					
		$K_p =$		ur	nits		[5]
	© OCR 2017. You may ph	otocopy this page.		Page 6 of 10		Created in ExamBu	ilder

The values of K_p for **equilibrium 18.1** at 298 K and 1000 K are shown below. $2NO(g) + O_2(g) \rightleftharpoons 2NO_2(g)$ **Equilibrium 18.1**

Temperature / K	<i>K</i> _p / atm ⁻¹
298	$K_p = 2.19 \times 10^{12}$
1000	$K_p = 2.03 \times 10^{-1}$

i.	Predict, with a reason, whether the forward reaction is exothermic or endothermic.	
		<u>1]</u>
ii.	The chemist increases the pressure of the equilibrium mixture at the same temperature.	
	State, and explain in terms of K_p , how you would expect the equilibrium position to change.	
	[3]

	tudent mixes hydrogen and iodine at room ter ch dynamic equilibrium.	nperature and pressure and allo	ws the mixture to
	$H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$	$\Delta H = -9 \text{ kJ mol}^{-1}$	equilibrium 3.1
	A closed system is required for dynamic ed	quilibrium to be established.	
	State one other feature of this dynamic eq	uilibrium.	
			[1]
i	The student heats the equilibrium mixture	keeping the volume constant.	
	Predict how the composition of the equilibrium	rium mixture changes on heating	J.
	Explain your answer.		
			[2]
ii	Predict and explain what effect, if any, an i of the equilibrium.	increase in the pressure would h	ave on the position
	effect		
	explanation		
			[1]
1	- Methanol, CH₃OH, is an important feeds	stock for the chemical industry.	
	In the manufacture of methanol, carbon reversible reaction shown below.		d together in the

High pressures and low temperatures would give a maximum equilibrium yield of methanol.

 $CO_2(g) + 3H_2(g) \rightleftharpoons CH_3OH(g) + H_2O(g)$ $\Delta H = -49 \text{ kJ mol}^{-1}$

i.	Explain this statement in terms of le Chatelier's principle.
	[3]
ii.	Explain why the actual conditions used by the chemical industry might be different.
	[2]

13. A chemist investigates the equilibrium that produces methanol:

$$CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$$

The chemist mixes CO(g) with $H_2(g)$ and leaves the mixture to react until equilibrium is reached.

The equilibrium mixture is analysed and found to contain the following concentrations.

Substance	Concentration/mol dm ⁻³		
CO (g)	0.310		
$H_2(g)$	0.240		
CH ₃ OH(g)	0.260		

Calculate the numerical value of K_c for this equilibrium.

Give your answer to an **appropriate** number of significant figures.

K _c =	dm ⁶	mol ⁻²	[2]
------------------	-----------------	-------------------	-----

END OF QUESTION paper