Y13 – pH and Buffers | | La Niata | D - 1 - 1 | |--|----------|-----------| | this module you are expected to be able to | In Notes | Revised | | Define the terms | | | | Acid and Base in terms of Brønsted-Lowry | | | | Monobasic, dibasic and tribasic | | | | Weak/Strong in the context of an acid. | | | | Identify acid-conjugate base and base-conjugate acid pairs. | | | | Recall the reactions of acids with oxides, hydroxides, carbonates and metals, including ionic
equations. | | | | Calculate pH from | | | | ○ [H ⁺] from a strong acid | | | | ○ K _w and [OH ⁻] from a strong base | | | | O K _a and [HA] from a weak acid K [114] 1631 from a weak acid | | | | ○ K _a [HA] and [A ⁻] from a buffer solution | | | | • Calculate pK _a | | | | Understand how K _a is related to the strength of a weak acid. | | | | Explain the action of a buffer solution in terms of equilibrium, when [H⁺] is increased and | | | | decreased, and how this causes pH to remain more or less constant over a small range of pH | | | | Draw pH titration curves for a combination of strong and weak acids and bases. | | | | · | | | | Explain why indicators change colour in terms of equilibrium. | | | | Select suitable indicators for an acid-base titration. | | | ## **Pre-test Evaluation** | I have | | |--|-----------------------------------| | Updated my yellow book notes | | | Ensured I understand all of my notes | | | Looked on the open drive for additional work | | | Asked my teacher for guidance | | | Confidence rating | I'm doomed! = + ++ I am the BOSS! |