Predicting Redox Reactions

Pre-lesson assignment - Textbook p. 391-393

Make notes on predicting redox reactions

- 1. Explain the link between oxidation and reduction, and E^{θ} in terms of the most positive and negative values.
- 2. Considering table 1:
 - a. When A and B half cells are joined in a cell
 - i. Which has the more positive value (and is therefore reduced)?
 - ii. Which has the more negative value (and is therefore oxidised)?
 - iii. Which of the following reaction combinations are possible?
 - 1. $Cr_{(s)} \rightarrow Cr^{3+}_{(aq)} + 3e^{-}$ and $Cu^{2+}_{(aq)} + 2e^{-} \rightarrow Cu_{(s)}$
 - 2. $Cr^{3+}_{(aq)} + 3e^{-} \rightarrow Cr_{(s)}$ and $Cu_{(s)} \rightarrow Cu^{2+}_{(aq)} + 2e^{-}$
 - iv. Write an overall equation for A and B.
 - b. When B and C half cells are joined in a cell
 - i. Which has the more positive value (and is therefore reduced)?
 - ii. Which has the less positive value (and is therefore oxidised)?
 - iii. Which of the following reaction combinations are possible?
 - 1. $Ag_{(s)} \rightarrow Ag^{+}_{(aq)} + e^{-}$ and $Cu^{2+}_{(aq)} + 2e^{-} \rightarrow Cu_{(s)}$
 - 2. $Ag^{+}_{(aq)} + e^{-} \rightarrow Ag_{(s)}$ and $Cu_{(s)} \rightarrow Cu^{2+}_{(aq)} + 2e^{-}$
 - iv. Write an overall equation for B and C.
 - c. When A and C half cells are joined in a cell
 - i. Which has the more positive value (and is therefore reduced)?
 - ii. Which has the more negative value (and is therefore oxidised)?
 - iii. Which of the following reaction combinations are possible?
 - 1. $Cr_{(s)} \rightarrow Cr^{3+}_{(aq)} + 3e^{-}$ and $Ag^{+}_{(aq)} + e^{-} \rightarrow Ag_{(s)}$
 - 2. $Cr^{3+}_{(aq)} + 3e^{-} \rightarrow Cr_{(s)}$ and $Ag_{(s)} \rightarrow Ag^{+}_{(aq)} + e^{-}$
 - iv. Write an overall equation for A and B.
 - d. Why can Cr3+ not be reduced by any combination of cells?
- 3. What are the limitations of predicting these reactions? note: $\Delta G = -nFE^{\Theta}$ where F is the faraday constant, but you don't need to know this. Basically, if you input a cell potential that is negative, you get $\Delta G > 0$. This means that these reactions will only work spontaneously in one direction.