Alkanes

1.	Butane, C_4H_{10} , reacts with chlorine to produce a chloroalkane with molecular formula $C_4H_9C\mathit{l}$.				
	The reaction is initiated by the formation of chlorine radicals from chlorine.				
	(i)	What is meant by the term radical?			
			[1]		
	(ii)	State the conditions necessary to bring about the formation of the chlorine free radicals from $\mathrm{C}\mathit{l}_2$.	[-]		
			[1]		
	(iii)	State the type of bond fission involved in the formation of the chlorine radicals.			
			[1]		
	(iv)	The chlorine radicals react with butane in several steps to produce $C_4H_9C\mathit{l}$.			
		Write equations for the two propagation steps.			
			[2]		

[Total 5 marks]

	$C_6H_{12} + Cl_2 \rightarrow C_6H_{11}Cl + HCl$	
The	mechanism for this reaction is a free radical substitution.	
(i)	Write an equation to show the initiation step.	
		[1]
(ii)	State the conditions necessary for the initiation step.	
		[4]
		[1]
(iii)	The reaction continues by two propagation steps resulting in the formation of chlorocyclohexane, $C_6H_{11}C\mathit{l}$.	
	Write equations for these two propagation steps.	
	step 1	
	step 2	
		[2]
(iv)	State what happens to the free radicals in the termination steps.	
		[1]

[Total 5 marks]

Cyclohexane, C_6H_{12} , reacts with chlorine to produce chlorocyclohexane, $C_6H_{11}C\mathit{l}$.

2.

(i)	The	reaction is initiated by the fission of CI_2 . State the type of fission involved.
(ii)	Writ	e an equation to illustrate the fission of $\mathrm{C}\mathit{I}_2$ in (i).
(iii)		fission of CI_2 leads to a chain reaction involving two propagation steps. plete the equations for the two propagation steps.
		C_5H_{10} + \rightarrow $\bullet C_5H_9$ +
		$\bullet C_5H_9$ + \rightarrow +
		[Total
ract	ional	[Total s a complex mixture of hydrocarbons. Initial separation is achieved by distillation. The separate fractions are then further refined to produce ons such as decane.
ract nydr	ional	s a complex mixture of hydrocarbons. Initial separation is achieved by distillation. The separate fractions are then further refined to produce
ract	ional o ocarb	s a complex mixture of hydrocarbons. Initial separation is achieved by distillation. The separate fractions are then further refined to produce ons such as decane.
ract nydr	ional o ocarb	s a complex mixture of hydrocarbons. Initial separation is achieved by distillation. The separate fractions are then further refined to produce ons such as decane.
ract nydr	ional o ocarb	s a complex mixture of hydrocarbons. Initial separation is achieved by distillation. The separate fractions are then further refined to produce ons such as decane.
ract	ional (ocarb	s a complex mixture of hydrocarbons. Initial separation is achieved by distillation. The separate fractions are then further refined to produce ons such as decane. State what is meant by the term <i>hydrocarbon</i> . A molecule of decane contains ten carbon atoms. State the molecular

(b)	Dodecane, C ₁₂ H ₂₆ , is a straight chain alkane that reacts with chlorine to produce
	a compound with molecular formula C ₁₂ H ₂₅ Cl.

$$C_{12}H_{26} + Cl_2 \rightarrow C_{12}H_{25}Cl + HCl$$

The reaction is initiated by the formation of chlorine free radicals from chlorine.

(i)	What is meant by the term free radical?	
(ii)	State the conditions necessary to bring about the formation of the chlorine free radicals from $\mathrm{C}l_2$.	[1]
(iii)	State the type of bond fission involved in the formation of the chlorine free radicals.	[1]
(iv)	The chlorine free radicals react with dodecane to produce $C_{12}H_{25}C\mathit{l}$. Write equations for the two propagation steps involved.	[1]
(v)	How many different structural isomers can be formed when chlorine reacts	[2]
,	with dodecane to form C ₁₂ H ₂₅ C <i>l</i> ? answer	[1]
	ecane, $C_{12}H_{26}$, can be cracked into ethene and a straight chain alkane such the molar ratio ethene: straight chain alkane is 2 : 1.	
(i)	Write a balanced equation for this reaction.	
(ii)	Name the straight chain alkane formed.	[2]
		[1]

(c)

			$C_6H_{14} + Br_2 \rightarrow C_6H_{13}Br + HBr$	
	(i)	State	e the type of reaction.	
				[1]
	(ii)		tify the three possible structural isomers of the product, C ₆ H ₁₃ Br, that could brimed from this reaction with hexane.	
			[Total 4 m	[3]
6.			$_{1}H_{10}$, under certain conditions, reacts with Cl_{2} to form a mixture of chlorinated One possible product is $C_{4}H_{9}Cl$.	iainoj
			$C_4H_{10} + Cl_2 \rightarrow C_4H_9Cl + HCl$	
	(a)	(i)	State the conditions.	
				[1]
		(ii)	Write equations to show the mechanism of this reaction.	
			initiation	
			propagation	
				[3]
		(iii)	Write one equation for a reaction that would terminate this mechanism.	
				[1]
		(iv)	State the type of bond fission involved in the initiation step.	

Hexane reacts with Br_2 in the presence of ultraviolet light.

5.

(b) One other possible product of the reaction between butane and chlorine is compound $\bf J$, $C_4H_8Cl_{12}$, shown below.

compound J

(i) Name compound **J**.

•••••	

[1]

(ii) Draw the skeletal formula of compound **J**.

[1]

(iii) In addition to compound $\bf J$, suggest **one** other possible structural isomer of $C_4H_8Cl_2$ that could have been formed in this reaction.

[1]

[Total 9 marks]