ALKENES MS

1. H₂
Ni/Pt/Pd (catalyst)

[2]

2. (i) decolourises

1

1

1

(ii)

$$\begin{array}{c} CH_3CH_2 & CH_2CH_2OH \\ H & C & C \\ H & Br \end{array}$$

$$\begin{array}{c} CH_3CH_2 & CH_2CH_2OH \\ Br & Br \end{array}$$

$$\begin{array}{c} CH_3CH_2 & CH_2CH_2OH \\ H & C & C \\ H & Br \end{array}$$

$$\begin{array}{c} CH_3CH_2 & CH_2CH_2OH \\ H & C & C \\ H & Br \end{array}$$

$$\begin{array}{c} CH_3CH_2 & CH_2CH_2OH \\ H & C & C \\ H & Br \end{array}$$

curly arrow from C=C bond to bromine 1 dipoles on Br_2 or curly arrow to show movement of bonded pair of electrons 1 intermediate carbonium ion/carbocation 1 curly arrow from lone pair on the Br- ion to carbonium ion (Br^{δ} - loses 1 mark) 1

[5]

3. (i) electron/lone pair acceptor

(ii)

$$H_3C$$
 $C = CH_2$
 C_2H_5
 $C = CH_2Br$
 C_2H_5
 $C = CH_2Br$
 C_2H_5
 $C = CH_2Br$

curly arrow from π -bond to $Br^{\delta+}$ Dipoles on the Br–Br bond
and
curly arrow from Br–Br bond to $Br^{\delta-}$ Curly arrow from Br^- to C^+

1 1 1

1

[4]

4. (i) decolourises/not clear/not discolours

1

(ii)

curly arrow from C=C to $Br^{\delta+}$

1

dipole on Br-Br and curly arrow showing movement of bonded pair of electrons

1

1

correct intermediate/carbonium ion/carbocation and curly arrow from Br to C+

1

1, 2-dibromopropane as product

[5]

5. (a)

$$C_2H_5$$
 C_2H_5
 C_2H_5

dipoles shown correctly on the Br-Br and curly arrow from the Br-Br 1 bond towards the Br^{δ}

correct intermediate shown 1

curly arrow from the lone pair or the negative charge on the Br ⁻ to the 1 C+

Hs are diagonal to each other in the trans/ 1 (b) (i) difference clearly shown in a diagram

(the product is saturated hence) there is no restricted rotation/single (ii) 1 bonds allow rotation/because C=C prevents rotation

[6]

- **6.** (a) (i) phosphoric acid/H⁺/sulphuric acid
 - (ii) lone/electron pair of electrons acceptor 1
 - (b) (i)

- Step 1curly arrow from π-bond to H^+ 1Step 2curly arrow from lone pair on the O^{δ^-} to C+1Step 3curly arrow from O—H bond to O+1
- (ii) catalyst ... no marks because it is **not** consumed/used up in the reaction/owtte 1

[6]

1

7. (a) (i) 24.7/12: 2.1/1: 73.2/35.5

2.06: 2.1: 2.06

CHCl 1

(ii) (CHCl = 12 + 1 + 35.5 =) 48.5

 $48.5 \times 3 = 145.5$

(b) (i) Any two from

1,1,3 -trichloro

3,3,3 -trichloro

2,3,3 -trichloro

1,3,3 -trichloro

2

(ii) 1, 2,3-trichloropropene

(trichloropropene scores 1 mark ✓)

3 marking points:

- correct numbers 1, 2,3
- trichloro
- propene/prop-1-ene

any two gets 1 mark

> 1 mark if backbone contains 4 carbons with 'endbonds' and a reasonable attempt has been made e.g used the wrong isomer.... max = 1 mark

ĊΙ

- (ii) non-biodegradable 1
 toxic fumes evolved when burnt 1
 HCl or Cl• or chlorinated organic compounds such as COCl₂ also
 - evolved when burnt 1 [13]

1 mark is available if the backbone consists of 4 C atoms and a reasonable attempt has been made $\checkmark\checkmark$

9. margarine

Ni catalyst 1
hydrogen/ hydrogenated 1
unsaturated vegetable oil/fat 1

poly(propene)

equation

two repeat units

(Ziegler) catalyst / high temp/heat/use of an initiator

Problems with disposal

non-biodegradable/don't decompose/not broken down by bacteria etc 1 when burnt produces toxic fumes 1

Future methods of disposal

recycling (to produce new polymers)

incineration for energy (production)

1

cracking/owtte (to produce useful organic molecules)

use gas scrubbers to reduce toxic fumes

any two

max = 9

QWC

Answer is well organised/structure and using at least three of:

catalyst, hydrogenation, addition polymerisation, Ziegler, incineration, feedstock, recycling, non-biodegradable, initiator, monomer, unsaturated.

in the correct context.

[10]

1

1

10. (a) 3-chloro(-2-)methylprop-1-ene/1-chloro(-2-)methylprop-2-ene

(b)

Backbone of 4 carbons and a reasonable attempt gets 1 mark.

2 [3]

1

1

11. Bonding: π -bond formed by overlap of (adjacent) p-orbitals/ π -bond labelled on diagram

diagram to show formation of the π -bond 1

Shape/bond angles:

tetrahedral around the CH_3 bond angle = $109^{\circ}28/(109-110^{\circ})$ trigonal planar around each C in the C=C 1 bond angle = $120^{\circ}(118-122^{\circ})$

Cis-trans

cis & transcorrectly labelled eg but-2-ene1require a double bond because it restricts rotation1each C in the C=C double bond must be bonded to two different atoms1or groups1

QWC Allow mark for well constructed answer and use of **three** terms like: orbital, tetrahedral, trigonal, planar, rotation, spatial, stereoisomers, geometric

[10]

1