HALOLKANES

A student reacted bromobutane with an excess of OH⁻ to produce butan-1-ol.
 In this reaction the hydroxide ion acts as a nucleophile.

[1]

(ii) Explain the term *nucleophile*.

(i)

.....

[1]

(iii) Outline the mechanism for this reaction.

Show curly arrows and relevant dipoles.

What name is given to this type of reaction?

[4]

[Total 6 marks]

- **2.** Halogenoalkanes, such as 1-chlorobutane, are hydrolysed with hot aqueous alkali, OH⁻(aq), to form alcohols.
 - (a) Describe, with the aid of curly arrows, the mechanism of the hydrolysis of 1-chlorobutane with OH⁻(aq) ions to produce butan-1-ol. Show any relevant lone pairs of electrons and dipoles.

[4]

(b)	Another halogenoalkane, H , has a relative molecular mass of 127 and has the following composition by mass: C, 37.8%; H, 6.3%; C <i>l</i> , 55.9%.		
	(i)	Show that the empirical formula of compound ${\bf H}$ is $C_2H_4C{\it l}$.	
	(ii)	Deduce the molecular formula of compound H .	[2]
	(iii)	Compound H can also be hydrolysed with hot aqueous alkali to form butane-1,3-diol. Draw the structure of butane-1,3-diol	[1]
	(iv)	Deduce the structure of compound H .	[1]
			[1]
			[Total 9 marks]

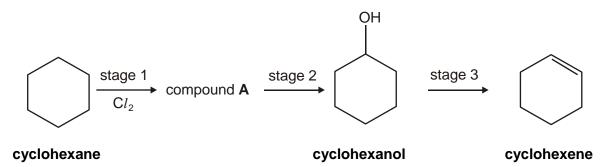
Paddington Academy 2

1-Bromo-2-methylpropane is used in the production of ibuprofen and can be prepared from the reaction between 2-methylpropan-1-ol and HBr. $(CH_3)_2CHCH_2OH + HBr \rightarrow (CH_3)_2CHCH_2Br + H_2O$ A student reacted 4.44 g of 2-methylpropan-1-ol with an excess of HBr. The student produced 5.48 g of 1-bromo-2-methylpropane. Calculate the number of moles of (CH₃)₂CHCH₂OH used. (i) answer mol [2] Calculate the number of moles of (CH₃)₂CHCH₂Br collected. (ii) (CH₃)₂CHCH₂Br, M_r = 137answer mol [1] Calculate the percentage yield. Quote your answer to three significant figures. (iii)

answer

[1]

[Total 4 marks]


Halogenoalkanes are used in the production of pharmaceuticals, polymers and flame

3.

retardants.

Paddington Academy 3

4. (a) Cyclohexane can be converted into cyclohexene via a three-stage synthesis.

(i) In stage 1, cyclohexane reacts with chlorine to form the organic product, compound **A**.

Show the structure of compound A

(ii) Stage 3 involves the dehydration of an alcohol.

State a suitable reagent for dehydrating an alcohol.

[1]

(iii) Write a balanced equation for the dehydration of cyclohexanol, C₆H₁₁OH.

[1]

[1]

(b) The reaction in stage 1 is difficult to control. One other possible chlorinated product is 1,4-dichlorocyclohexane. This is shown below.

cyclohexane

1,4-dichlorocyclohexane

1,4-Dichlorocyclohexane reacts in the same way as compound ${\bf A}$ in stages 2 and 3.

(i) Suggest the structure of compound **B**.

[1]

(ii) Two cyclic alkenes, **C** and **D** are formed in stage 3. **C** and **D** are structural isomers. Suggest the structures of **C** and **D**.

[2]

[Total 6 marks]

5. Propane, C_3H_8 , is used in the reaction sequence shown below.

- (a) The reaction sequence shows several important reaction mechanisms. Select from reactions **1** to **4**, the reaction that shows
 - (i) free radical substitution, reaction

[1]

(ii) electrophilic addition, reaction

[1]

(iii) elimination, reaction

[1]

- (b) In reaction **2**, the aqueous OH⁻ acts as a nucleophile.
 - (i) State what is meant by the term *nucleophile*.

.....

[1]

(ii) Complete, with the aid of curly arrows, the mechanism involved in reaction **2**. Show any relevant dipoles.

$$H_3C - CH_2 - CH_2 - CH_2 - CH_2 - CH_2 - CH_2 - OH$$
 +

[4]

(i) S		Compounds B and D are structural isomers of each other.			
	State what is meant by the term struc	ctural isomers.			
(ii) [Draw the skeletal formulae of compounds B and D .				
	Compound B	Compound D			
Compo	Compound C can be polymerised to form compound E .				
(i) S	State the type of polymerisation.				
(ii) 1	Name compound E				
	Description of assessment F. Ohao	o face and a street to			
/···> =	(iii) Draw a section of compound E . Show two repeat units.				

[Total 15 marks]

Paddington Academy 7