HALOALKANES MS

1. (i) substitution/hydrolysis (1)

1

(ii) electron pair donor (1)

1

(iii)

$$CH_{3}CH_{2}CH_{2} \xrightarrow{\delta+} CH_{2} \xrightarrow{\delta-} CH_{3}CH_{2}CH_{2} - CH_{2} - OH + Br^{-}$$

$$OH$$

correct dipole (1)

curly arrow from the O in the OH- to C in the CH₂ (1)

curly arrow to show movement of bonded pair in the C-Br bond (1)

Br⁻ as a product (1) 4

[6]

2. (a) Cl^- must be shown as a product \checkmark

1

(at least 1) lone pair of electrons on the O in the OH with curly arrow

from the lone pair on the OH $^-$ to the $C(^{\delta+})\checkmark$

1

dipoles on the C-Cl bond \checkmark

1

curly arrow from C-Cl bond to the Cl^{δ^-}

1

The mechanism below would get all 4 marks.

(b) (i) mark for method/dividing by A_r / C, 3.15; H, 6.3; C*l*, 1.58. \checkmark

1

divide by smallest to get $C_2H_4Cl \checkmark$

1

alternative method:

% of each element $\times 127 \div A_r$ of that

element = molecular formula, hence deduce empirical formula

(ii) $C_4H_8Cl_2\checkmark$ 1

(iii) any unambiguous form of: ✓

1

(iv) any unambiguous form of: ✓

ecf to (iii) provided that there are two OHs in (iii)

[9]

3. (i) M_r of 2-methylpropan-1-ol = 74

moles = 4.44/74 = 0.06

(ii) moles = 5.48/137 = 0.04

1

1

1

....

1

(iii) 66.7%

[4]

4. (a) (i)

(ii) $H_2SO_4/Al_2O_3/(hot)$ pumice/ H_3PO_4

1

(H₂SO₄(aq) or dil H₂SO₄ loses the mark)

1

 $C_6H_{11}OH \ / \ C_6H_{12}O \rightarrow C_6H_{10} + H_2O$

(b) (i)

(iii)

1

also allow

Cl-alcohol

(ii)

2

from the diol allow

 Cl^- as a product

from the Cl-alcohol allow

1

1

[6]

5. 1 (a) (i) reaction 1 reaction 4 1 (ii) reaction 3 1 (iii) (b) (i) lone pair/electron pair donor 1 Correct dipole 1 Curly arrow from the O in the OH to C in the CH2 1

Curly arrow to show movement of bonded pair in the C-Cl bond

- (c) (i) same molecular formula , different structure/arrangement of atoms. 2 (same formula, different structure.)

(ii) 2

(d) (i) addition, (not additional)

1

(ii) poly(propene)/ polypropene/ polypro-1-ene, polypropylene

1

(iii)

[15]

4