ALCOHOLS AND MODERN ANALYTICAL TECHNIQUES HW MS

1.

(i)
$$H^+ \checkmark Cr_2O_7^{2-}$$
 2

(ii)

(iii) carboxylic acid would have an absorption between $1680 - 1750 \text{ cm}^{-1} / 1700 \text{ cm}^{-1} \text{ or } 2500 - 3300 \text{ cm}^{-1}$.

[6]

1

- 2. (a) (i) H^+ 1 $Cr_2O_7^{2-}$ 1
 - (ii) Orange to green/black/blue 1
 - (b) (i) contains a C=O/aldehyde, ketone, carboxylic acid and ester/ 1 carbonyl/carbonyl in an aldehyde
 - (ii) does **not** contain a O–H/ (hydrogen bonded in a) carboxylic acid 1
 - (iii) distillation (no mark) **because** distillation allows loss of volatile components /removes butanal from oxidising mixture prevents formation of RCOOH/ partial oxidation would be achieved or reverse argument for reflux not being used in that reflux prevents loss of volatile components hence complete oxidation would be achieved/RCOOH would be formed

[7]

- 3. (a) (i) alkene ✓ 1
 alcohol/hydroxy/hydroxyl ✓ 1
 - (b) (i) $I = \text{alkene \& II} = \text{alcohol... both are needed } \checkmark$
 - (ii) decolourised / colourless ✓
 - (iii) **✓**

(iv) \mathbf{X} as shown below \checkmark

- (c) (i) Ni/Pt/Rh/Pd ✓ 1
 - (ii) compound **B** is $C_{10}H_{22}O$ \checkmark 1
 - (iii) $C_{10}H_{20}O + H_2 \rightarrow C_{10}H_{22}O \checkmark$ 1

[9]

Paddington Academy 2

4.	(a)	(i)	Alkene/C=C ✓		1	
			Alcohol/ROH/hydroxy/hydroxyl/OH (not OH⁻ or hydroxide) ✓		1	
		(ii)	One of the C in both C=C is joined to two atoms or groups that			
	4.	0.1	are the same \checkmark		1	
	(b)	Observation		decolourisation (of Br ₂) ✓	1	
		Molecular formula		$C_{10}H_{18}OBr_4 \checkmark \checkmark$	2	
				$C_{10}H_{18}OBr_2$ gets 1 mark		
	(c)	reage	ent	CH₃COOH ✓	1	
		catal	yst	$\mathrm{H}_2\mathrm{SO}_4/\mathrm{H}^+/\mathrm{HC}l$ (aq) or dilute loses the mark \checkmark	1	
	(d)	(i)	$C_{10}H_{18}O + 2[O]$	$\rightarrow C_{10}H_{16}O_2 + H_2O \checkmark \checkmark$	2	
			1 mark for H ₂ O and 1 mark for 2[O]			
			The infra-red spe	spectrum was of compound Y		
			because absorption between 1680 − 1750 cm ⁻¹ indicates a C=O ✓		1	
			and the absence of a peak between $2500 - 3300 \text{ cm}^{-1}$ shows the absence			
			of the OH hydrog	gen bonded in a carboxylic acid 🗸	1	
						[12]
5.	(i)	Anv	Any two realistic fragments,			
	(1)	e.g. CH_3^+ : 15; $C_2H_5^+$: 29; $C_3H_7^+$: 43; $C_4H_9^+$: 57; OH^+ : 17, etc. (1) (1)				
		Do n	Do not penalise missing charge.			
	(ii)	breat	halysers/monitorin	ng of air pollution, MOT emission testing, etc. (1)	1	[2]
						[3]
6.	mole ratio = $88.89/12 : 11.1/1 = 7.41 : 11.1$ (1) empirical formula = C_2H_3 (1)					
	relative mass of $C_2H_3 = 27$.					
	$M_r = 2 \times 29$ so molecular formula = C4H6 (1)					
	\mathbf{X} reacts with 2 mol \mathbf{H}_2 so there are 2 double bonds (1)					
	Possible structure = 1,3-butadiene /					
	(1)					
						[5]

Paddington Academy 3